3 研究结果

3.1 运动员水槽测试情况

两位男队员相对最大摄氧量分别为 67.12 mL/kg/min 和 62.78 mL/kg/min, 男甲有氧能力较好; 男乙专项有氧能力 较好, 而男甲乳酸清除能力较好, 乳酸清除率 75.92%。男甲 划频曲线较平稳, 前半段和后半段的划频次数上下变动不超 过2次, 最大划频一般, 最大划频次数 35次, 速度能力有待 提高。男乙划频节奏较好, 前半段曲线较平稳, 上下变动也 不超过2次, 后半段划频次数逐渐增加, 基本保持 30 s 增 加1次, 对最大摄氧量的持续时间有贡献。

两位女队员相对最大摄氧量分别为 67.27 mL/kg/min 和 54.12 mL/kg/min,都比较好,女乙恢复能力较好,乳酸 清除率 73.89%。女甲最高划频比较高,最大划频次数 41 次,运动员的速度素质较好;划频曲线比较稳定,上下变动不超 过 2 次,但是一开始就比较高,达到最大摄氧量比较快,可能也是坚持时间不很长的原因。女乙划频节奏不很稳定,划 频次数增加较快,有两段 30 s 增加 3 次,经过两次较快增 加后下降也较快,从42次下降到37 次,可能也是坚持时间限 制的因素。

3.2 运动员泳池测试情况

与成绩相联系,速度、强度不同,血乳酸不同,运动员的最大摄氧量能力有差异,无氧阈也有个人的特点,如男丙乳酸最大值达16.07 mmol/L,女丙乳酸阈值在1.42 mmol/L。结合速度乳酸曲线和心率,可以对运动员的最大摄氧量能力作出说明和判定,并用于训练安排和评价能力发展变化。如应用6~8 mmol/L乳酸范围的速度曲线,对运动员进行最大摄

氧量能力训练,并可以对运动员训练前后最大摄氧量能力的速度、乳酸范围进行纵向评定,横向比较。

3.3 泳池与水槽最后的乳酸结果

乳酸代谢的个体差异较大,乳酸的生成和消除与运动强度、时间相关外,还与肌肉有氧能力、心脏泵血功能、通气功能等有关。本次水槽测试,运动员的年龄比较小,男运动员的乳酸值在5~7 mmol/L范围,女运动员在3~5 mmol/L范围。无氧阈时的乳酸水平,不同运动员可在1.4~7.5 mmol/L 之间变化。如泳池测试男运动员的乳酸阈值在4 mmol/L 左右,女丁在3 mmol/L 左右。这也提示以乳酸指标指导训练时要注意个体化原则。

4 研究结论

4.1 多参数监控的有效性:通过测试运动员运动后的血乳酸,对比运动中摄氧量、成绩、心率和相应血乳酸,结合划频变化,可以监控、评价运动员的训练质量、完成情况以及运动、机能水平,找出游泳过程中的优缺点,为教练员训练提供科学依据;测试运动前后血乳酸和乳酸清除率,可以为运动员放松游设定合理的强度,使运动员血乳酸能够在最短的时间内得到消除,使运动员尽快恢复体力。

4.2 泳池、水槽两种测试方法的有效性:采用合适的程序, 有效完成运动员测试的情况下,通过泳池或水槽,运用速度、 乳酸、心率的配合关系,最大摄氧量和乳酸的相互补充,结 合划频等信息,可以对运动员的最大摄氧量能力作出有效的 分析和评定,能够监控、评定运动员的训练水平和机能变化, 从而实现科学的判定和指导。

第十一届全运会女子四人皮艇(WK4-500m)决赛竞速结构分析

蒋 川¹,刘功聚¹,姜晓伟¹,方海波²(1.浙江省体育职业技术学院;2.浙江省体育科学 研究所)

文章编号: 1006-1207(2010)06-0024-02

Speed Structure in the WK4-500m Finals of the 11th National Games

JIANG Chuan (Zhejiang College of Sports)

Key words: National Games; women; canoe; speed structure

1 研究目的

从全运会皮划艇项目比赛反映了国内各省份在该项目上 的最高水平。通过全运会该项目的研究,基本上可以分析国 内皮划艇项目的技战术情况。本研究以第十一届全运会女子 四人皮艇决赛阶段的前五名为研究对象,通过分析分段成绩、 平均速度、桨频指标和躯干倾角指标来讨论女子四人皮艇的 竞速结构。

2 研究方法

2.1 定点定焦和跟踪拍摄法

定点定焦摄像机机位分别放在距起点50 m处和离终点200 m 处, 跟踪机位设在比赛转播艇上, 后期对视频进行处理。

2.2 数据处理法

运用德国SIMI软件对录像进行分析处理。并对获得数据

通过 Excel 软件进行统计学分析,为研究提供理论依据。

3 研究结果

3.1 分段成绩、平均速度和桨频

3.1.1 分段成绩(单位:s)

分段成绩与总成绩有很大的相关性,从表1和图1中 看,100~200 m的分段成绩最好,400~500 m的分段成 绩最差。第一名四川队与第二名浙江队在比赛前半程实力相 当,分段成绩非常接近,在比赛后程,两队逐渐拉开距 离,四川队的分段成绩稍有下降,而浙江队分段成绩下滑 较明显,尤其在最后100 m冲刺阶段成绩不够理想。观察 25 m段的分段成绩图,可知第五名辽宁队的分段成绩较不 稳定,时好时坏,成绩起伏较大,虽然某些分段成绩较 好,但不利于持久作战。

表1 WK4-500m 分段成绩(s) Table I Segment Results of WK4-500m (s)

代表队	$0{\sim}100{\rm m}$	$100{\sim}200{\rm m}$	$200{\sim}300{\rm m}$	$300{\sim}400{\rm m}$	$400{\sim}500{\rm m}$
四川队	19.48	17.78	18.5	19.8	20.22
浙江队	19.5	17.74	19.24	19.62	21.04
广东队	19.78	17.38	19.02	19.86	21.02
山东队	19.78	17.88	19.52	20.08	20.8
辽宁队	19.86	18.1	19.64	20.2	21.16

3.1.2 分段速度(单位:m/s)

观察图 2 和图 3,可知 100 m 的分段艇速前五名艇均比 较统一,整体趋势一致。冠军艇四川队在 200~300 m 的途 中划阶段与 400~500 m 的最后冲刺阶段有突出表现,艇速 明显领先于其他几条艇。辽宁队在 25 m 分段艇速曲线图中 表现较不平衡,起伏较大。

Figure 3 Canoe Speed in the Segment of 25m of WK4-500m

3.1.3 分段桨频(单位:桨/min)

从图4和图5看,四川队与辽宁队表现最平稳,桨频较高,平均桨频在125~135之间,但是四川队能夺得桂冠, 而辽宁队只获得第五名,说明四川队的桨下效果明显比辽宁 队好,从上述分段成绩中我们也可以看出辽宁队虽然桨频较 稳定,但是桨下效果很不稳定。山东队的桨频波动较大, 比赛前程明显高出其他艇,比赛后程桨频下降明显。

Figure 4 Oar Frequency in the Segment of 100m of WK4-500m

Figure 5 Oar Frequency in the Segment of 25m of WK4-500m

3.2 躯干倾角、划桨节奏

- 3.2.1 分段躯干倾角(单位: °)
- 3.2.1.1 每支艇上的一号位选手躯干角度分析(见图6~8)

图6 WK4-500m1号位选手分段躯干倾角(0~150m 段) Figure 6 Trunk Inclination of the No.1 Rowers in the Segment of 0-150m of WK4- 500m

图 7 WK4-500m1 号位选手分段躯干倾角(150~350m 段) Figure 7 Trunk Inclination of the No.1 Rowers in the Segment of 150-350m of WK4-500m

图 8 WK4-500m1 号位选手分段躯干倾角(350~500m 段) Figure 8 Trunk Inclination of the No.1 Rowers in the Segment of 350-500m of WK4-500m

3.2.1.2 每支艇上的二号位选手躯干角度分析 (见图 9~11)

图 9 WK4-500m 2 号位选手分段躯干倾角(0~150m 段) Figure 9 Trunk Inclination of the No.2 Rowers in the Segment of 0-150m of WK4-500m

图10 WK4-500m2 号位选手分段躯干倾角(150-350m 段)

Figure 10 Trunk Inclination of the No.2 Rowers in the Segment of 150-350m of WK4-500m

图 11 WK4-500m2 号位选手分段躯干倾角(350~500m 段) Figure 11 Trunk Inclination of the No.2 Rowers in the Segment of 350-500m of WK4-500m

3.2.1.3 每支艇上的三号位选手躯干角度分析(见图12~14)

图 12 WK4-500m 3 号位选手分段躯干倾角(0~150m 段) Figure 12 Trunk Inclination of the No.3 Rowers in the Segment of 0-150m of WK4-500m

Figure 13 Trunk Inclination of the No.3 Rowers in the Segment of 150-350m of WK4-500m

图14 WK4-500m 3号位选手分段躯干倾角(350~500m 段)

Figure 14 Trunk Inclination of the No.3 Rowers in the Segment of 350-500m of WK4-500m

3.2.1.4 每支艇上的四号位选手躯干角度分析(见图 15~17)

图 15 WK4-500m 4 号位选手分段躯干倾角(0~150m 段) Figure 15 Trunk Inclination of the No.4 Rowers in the Segment of 0-150m of WK4-500m

图 16 WK 4-500m 4 亏位远于分段驱十倾角(150~350m 段)

Figure 16 Trunk Inclination of the No.4 Rowers in the Segment of 150-350m of WK4-500m

图17 WK4-500m 4号位选手分段躯干倾角(350~500m 段)

Figure 17 Trunk Inclination of the No.4 Rowers in the Segment of 350-500m of WK4-500m

1 000 m四人皮艇比赛分为起航阶段(0~250 m)、途 中划(250~750 m)和冲刺阶段(750~1 000 m),我们借鉴 与此将全程500 m分为3个阶段:0~150 m为启航阶段, 150~350 m为途中划阶段,350~500 m最后冲刺阶段, 通过 SIMI 分析软件,记录各个阶段躯干倾角的变化。

比较各参赛队的躯干倾角,并无一定规律,说明每个队的划桨方式不同。同一支艇上的4位选手的躯干倾角较接近,基本在同一范围内变化角度,说明各个队的4位选手相互配合具有一定的协调性。

3.3 相关性分析

通过表2我们可以发现200~300 m段相关系数为0.970, 呈极度高相关, P < 0.01,200~300 m段属于途中划阶段, 也因此说明途中划阶段的重要性,WK4 作为一个多人艇配 合项目,不但要做到技术动作的相互协调配合,还要求有 一定的战术安排,尤其要注意途中划阶段速度的保持并在能 力范围内适当提高艇速。

	表 2	2 分	段艇速	[与	全積	晋书	那返	目的	相关	生	
Figure	II	Canoe	Speed	in	the	Segr	nent	of	100m	of	WK4
500m											

	$0{\sim}100$ m	$100{\sim}200{\rm m}$	$200{\sim}300{\rm m}$	$300{\sim}400{\rm m}$	$400{\sim}500{\rm m}$
r	0.780	0.589	0.970**	0.748	0.733
р	0.120	0.296	0.006	0.146	0.159
注.	** 为 P < 0	0.1			

4 结论

4.1分段成绩与总成绩有很大相关性,合理分配体能、保持稳定较高的分段成绩对提高成绩尤为重要。

4.2短距离项目比赛中,高桨频是取得良好成绩的重要因素 之一,同时应注意不能一味追求高桨频而使桨草草出水, 而忽略划桨效果。

4.3 各队躯干倾角并无一定的规律,呈现各队之间配合的统一协调。

4.4途中划阶段艇速同全程平均速度呈极度高相关,各队重 视途中划阶段的速度保持,并在合理安排体能的情况下适当 提高途中艇速。

等速测力评价柔道运动员伤后力量特征及应用

袁 鹏,吴翠娥,朱晓梅(江苏省体育科学研究所)

文章编号: 1006-1207(2010)06-0027-01

Application of Isokinetic Dynamometer in Evaluating Strength Characteristics of Judo Athletes

YUAN Peng (Jiangsu Research Institute of Sports Science)

Key words: judo; isokinetic dynamometer; injured; strength characteristics

1 研究目的

柔道属创伤发生率较高的接触性运动项目,本研究从肌

力平衡角度探索柔道运动员伤后的力量特征,分析关联运动 损伤的敏感评价指标,将有助于降低柔道运动员的损伤发生