

运动性贫血大鼠红细胞膜功能变化与运动方式的关系

潘孝贵1,高潮1,陈乃富2,刘文中2,王文辉1

摘 要:研究目的:研究红细胞膜功能改变与运动方式的关系。研究方法:通过跑台运动和游泳运动两种方式建立运动性贫血动物模型,测定红细胞膜磷脂酰丝氨酸外翻率,带3蛋白,葡萄糖载体蛋白-1转运功能,钠钾ATP酶活性。研究结果:两种运动方式诱导的运动性贫血时红细胞膜磷脂酰丝氨酸外翻率,带3蛋白阴离子转运蛋白功能、葡萄糖载体蛋白转运葡萄糖功能,钠钾ATP酶活性变化没有显著差异。结论:运动性贫血红细胞膜功能的改变与不同运动方式无关。

关键词:运动方式;红细胞膜;磷脂;蛋白质

中图分类号: G804.2 文献标识码: A 文章编号: 1006-1207(2007)01-0075-03

Correlation between Erythrocyte Membrane Functional Changes of Exercise-Induced Anemia Rats and Exercise Modes

PAN Xiao-gui, GAO chao et al

(Wanxi College, Anhui 237012, China)

Abstract: To study the relationship between erythrocyte membrane functional changes with exercise mode. Methods: Exercise-induced anemia animal models were set up through the exercise modes of treadmill exercise and swimming. The eversion rate of erythrocyte membrane phosphatidylserine, band 3 protein, glucose transporter protein-transport function and Na-K-ATPase activity were tested. Result: There is no significant changes in eversion rate of erythrocyte membrane phosphatidylserine, band 3 protein anion transport function, glucose transporter glucose-transport function and Na-K-ATPase activity during the exercise-induced anemia caused by the two modes of exercise. Conclusion: There is no correlation between the functional changes of exercise-induced anemia erythrocyte membrane and modes of exercise.

Key words: exercise mode; erythrocyte membrane; phosphatide; protein

根据有限的资料显示,几乎所有的运动项目均可以出现运动性贫血,但不同运动项目出现的几率不同口。这表明,运动方式可能是影响运动性贫血发生的因素之一。运动性贫血的发生与红细胞膜结构和功能异常有关。那么,不同运动方式诱导的贫血,红细胞膜功能的变化是否也存在不同?本研究通过跑台和游泳运动建立运动性贫血动物模型,比较这两种运动方式对红细胞膜功能的影响,为阐明运动性贫血的发生机制提供实验依据。

1 材料与方法

1.1 实验动物与分组

雄性SD大鼠60只,体重(200±15)g,由上海西普尔-必凯

实验动物有限公司提供, 动物许可证编号: SCXK (沪) 2003—0002, 动物级别: 清洁级。随机、筛选分为 3 组: 对照组 ($Control\ Group, CG, 20$ 只) 递增负荷跑台运动组 ($Treadmill\ Group, TG, 20$ 只)、负重游泳组 ($Swimming\ Group, SG, 20$ 只)。动物饲养环境温度 (23 ± 2) C, 湿度 $40\%\sim60\%$; 分笼饲养, 每笼5只 自由饮食,动物饲料为全价营养颗粒饲料,由上海士林动物饲料有限公司提供;12: 12 光照。

1.2 动物训练方案

CG 组大鼠除进行跑台适应性训练(坡度:0°,跑台速度:15m/min,运动时间:10min,运动频率:2次/周)或游泳训练(无负重,运动时间:30min,运动频率:2次/周)外,不给予其他任何处理。TG 组大鼠进行递增负荷的运

表 1 递增负荷购台训练方案

农工							
	第1天	第2天	第3天	第4天	第5天	第6天	
第1周	0, 15, 30	0,15,45	0, 15, 60	0,20,30	0,20,45	0,20,60	
第2周	3, 15, 30	3,15,45	3, 15, 60	3, 20, 30	3,20,45	3, 20, 60	
第3周	6, 15, 30	6,15,45	6, 15, 60	6,20,30	6,20,45	6,20,60	
第4周	9, 15, 30	9,15,45	9, 15, 60	9,20,30	9,20,45	9, 20, 60	

注:表中数据从左到右,依次是跑台的坡度、速度和运动时间

收稿日期: 2006-09-26

基金项目:安徽省教育厅青年教师科研资助项目(2004 jq1904)

第一作者简介:潘孝贵(1969~),男,讲师,主要研究方向:运动人体科学教学和研究

作者单位: 1. 安徽省皖西学院体育系,安徽六安 237012; 2. 安徽省皖西学院化生系,安徽六安 237012

动方案: 动物跑台为 DSPT-202(浙江杭州段氏制造),训练方案见表 1。训练过程中,若大鼠出现疲劳现象(不愿意跑,滞留跑台的后1/3,电击驱赶无效),允许动物休息2~3min,然后继续运动,直到完成预定的训练计划。SG 组大鼠负重(5%体重)游泳,游泳池为瓷砖铺壁,规格为60×60×150cm,水深100cm(超过动物身长的2倍),水温(25±1)℃。第1天游泳60min,然后每2天递增15min,6天/周训练。当游泳时间达到3h时,维持在该运动负荷至实验结束。若大鼠沉入液面下10s 不能主动浮出水面,可以让其休息2~3min,直到其完成训练计划为止。

1.3 样本采集

每2天称体重和取尾静脉血检测血红蛋白含量,直到至少50%大鼠血红蛋白持续下降至或处于正常值的下限后,继续训练2天,然后将血红蛋白持续下降的大鼠编为运动性贫血阳性组(Positive Sports Anemia, PSA)。大鼠麻醉处死,取血,分离血浆和红细胞,备用。

1.4 测试方法

1.4.1 血红蛋白

测定采用高铁氰化钾法,试剂由上海开益试剂公司提供,分光光度计为722型,上海分析仪器厂生产。

1.4.2 红细胞膜磷酯酰丝氨酸外翻率

正常红细胞膜脂质双层中脂类分子呈不对称性分布,其外

层脂类富含卵磷脂(PC)和鞘磷脂(SM), 内层脂类以磷脂酰丝氨酸(PS)和脑磷脂(PE)为主。Annexin V是一种钙依赖性磷脂结合蛋白, 与PS有高度的亲和力, 利用带荧光标记的Annexin V作为荧光探针, 可以特异性识别转到膜外侧的 PS。本实验采用 Coulter 流式细胞仪,由 Boehringer mannheim 公司提供 Annexin V-Fluos S 试剂盒。

1 μ 1 压积红细胞中加入 1m1 生理盐水,混匀悬浮;取 100 μ 1红细胞混悬液 (相当于红细胞计数 106 个),加入 100 μ 1PS 反应液室温下孵育 10 ~15min,洗去反应液,加入 400 μ 1PS 孵育液,上机测定,结果以百分比表示。

1.4.3 红细胞膜蛋白功能

带3蛋白阴离子转运功能:根据Motais经典方法^[2]及周汉清,张志鸿方法^[3]。用50%溶血时间来表示阴离子转运功能。50%溶血时间越长,阴离子转运能力越弱,反之,阴离子转运能力越强。分光光度计为上海分析仪器厂722光栅分光光度计。

葡萄糖载体蛋白-1:根据张志鸿研究方法^[4]。分光光度计为上海分析仪器厂722光栅分光光度计。基本原理是根据红细胞体积变化,光密度也发生变化,在一定的范围内,光密度的倒数与细胞体积成直线关系。从红细胞加入PH7.4磷酸盐缓冲液(PBS)时计时,到光密度值不变时止所需的时间代表葡萄糖转运的能力。时间越短,葡萄糖转运能力越强,反之葡萄糖转运能力越弱。

表 2	大鼠训练讨程中	『血红蛋白的变化((单位,g	/ 1)

	CG (N=20)	TG (N=20)	SG (N=20)	TPSA (N=13)	SPSA (N=10)
第1周	182. 27 \pm 2. 15	181. 31 \pm 1. 65	181. 35 \pm 2. 00		
第2周	183. 21 ± 1.30	180. 24 ± 1.34	180.00 \pm 1.25	164.24 + 2.10**	165. 21 ± 1. 53**
第3周	183. 25 ± 2.10	174.32 ± 2.40	175.32 ± 2.10	104. 24 ± 2. 10**	100. ∠1 ± 1. 00**
第4周	183. 21 ± 2.14	170.32 ± 2.21	173.21 ± 1.50		
第5周		184. 32 \pm 2. 15-	170. 25 \pm 1. 30		
第6周		$184.32 \pm 2.46 -$	171.20 ± 1.50		

注: ** 与 CG 比较,p < 0.01。CG 为安静对照组,TG 为跑台运动组,SG 为负重游泳组,TPSA 为运动性贫血阳性跑台运动组,SPSA 为运动性贫血阳性负重游泳组。

表 3 运动性贫血时红细胞膜脂质和蛋白功能的比较

组别	PS 外翻率 (%)	阴离子转运功能(s)	葡萄糖转运能力(s)	钠钾泵活性(μ mp/mgpr/hr)
对照组 (N=10)	0.111 ± 0.017	69.39 ± 21.78	152.25 ± 39.64	0.124 ± 0.032
跑台运动贫血组(N=13)	0. 100 \pm 0. 016 #	106. 35 \pm 23. 56 $\#$	186. 45 \pm 41. 36 $\#$	0.093 \pm 0.028 $\#$
游泳运动贫血组(N=10)	$0.094 \pm 0.014 \#$	99. 73 \pm 24. 12 $\#$	179. 38 ± 34 . $69 \#$	0. $106 \pm 0.012 ~\#$

注: #与对照组比较, p < 0.05

Na+, K+-ATP 酶活性: 比色法, 试剂盒由南京建成生物工程公司提供。按说明书操作, 分光光度计为 722 型分光光度计(上海分析仪器厂)。

1.4.4 统计分析

SPSS10.0 统计软件分析。所有结果均以均值加减标准差表示,单因素方差分析, P<0.05 为显著性水平,P<0.01 为高度显著性水平。

2 结果

2.1 大鼠血红蛋白的变化

TG组4周,SG组6周训练后,分别有13只和10只大鼠血红蛋白显著下降。贫血阳性组与对照组比较,有统计学上的显著差异(p<0.01)。整体而言,TG和SG组与对照组

比较,有下降的趋势,但未达到统计学上的差异。

2.2 运动性贫血时红细胞膜磷脂和蛋白功能的变化

从表3可以看出,TG和SG中的贫血阳性大鼠与对照组比较有显著差异(P<0.05),但TG与SG组比较,红细胞膜磷脂酰丝氨酸外翻率,阴离子转运功能,葡萄糖转运能力,钠钾泵的活性均没有显著差异。

4 讨论与分析

红细胞过多或过早的破坏,称为"溶血"。新生的红细胞不能弥补破坏的红细胞数量,就会发生"溶血性贫血"。激烈运动改变了红细胞生活的内环境理化因素,加快了红细胞的破坏,另一方面,运动加快了蛋白质和铁的

代谢,减少了红细胞的合成,结果红细胞计数减少,血红素含量下降,贫血发生。

运动诱导红细胞溶血的因素中,机械挤压是最早被人们认识的^[5,6]。早在1881年Fleisher 即发现了剧烈的急行军导致尿潜血。不过,游泳运动员没有肢体与坚硬的地表接触,也会发生运动性贫血^[7],这说明,除机械挤压外,其他因素也参与运动性贫血的发生,如激烈运动产生的大量自由基攻击富含脂肪酸和蛋白质的红细胞膜^[8,9],造成红细胞膜过氧化,膜流动性下降,刚性增加,脆性上升,红细胞变形能力减弱,易破裂。溶血的发生都是细胞膜功能下降,最终破裂的结果,那么不同运动方式诱导的贫血时红细胞膜功能变化是否相同?目前还没有实验证明这一点。

本实验表明,无论是跑台运动还是负重游泳运动诱导的 贫血,红细胞膜功能改变是一致的,均表现为磷脂酰丝氨 酸外翻率增加,阴离子转运能力和葡萄糖载体-1转运能力 减弱,钠钾泵活性下降。磷脂酰丝氨酸外翻率增加,表明 红细胞膜磷脂双分子层的不对称特性被破坏。阴离子转运能 力与红细胞运输氧和二氧化碳的功能有关,葡萄糖载体蛋白 -1转运葡萄糖能力与红细胞葡萄糖利用能力有关,钠钾泵 活性与红细胞膜离子浓度梯度有关。这3个膜蛋白功能的下 降表明细胞的生理功能低下,能量代谢失衡。这个结果提示, 运动只是一个外力作用,能否诱导贫血的发生,关键在于红 细胞膜结构和功能的变化。因此,预防运动性贫血,首要的 任务是保护红细胞膜。红细胞膜磷脂成分是影响红细胞膜功 能的一个主要因素。由于磷脂处于不断的更新中,补充运动 中受到损伤的磷脂, 如脑磷脂和卵磷脂, 可以稳定红细胞膜 组分,从而维持了红细胞膜的正常功能[10~12]。也有很多研 究表明,补充自由基清除剂是一个很好的选择,可以减少自 由基对红细胞膜脂质和蛋白的攻击[13]。

5 结论

运动性贫血时红细胞膜功能变化与运动方式无关。表明红细胞膜功能的下降是运动性贫血发生的内在机制。

参考文献:

- [1] 邱兴怡. 五支国家队连续 10 年运动性贫血的调查与分析 [C]. 2002 年全国运动医学学术会议论文摘要汇编. 北京: (出版社不详), 132
- [2] L.Allbert , R Motais. Molecular features of or ganic anion permeablity on ox red blood cell[J]. Physiology, 1975, 246: 159-179
- [3] 周汉清, 张志鸿. 红细胞膜阴离子通透性的溶血动力性测量[J]. 生物化学与生物物理学报. 1993, 25(2)111~116
- [4] 张志鸿,许红,彭锋. 红细胞膜对葡萄糖运输的快速测定 [J]. 生物物理学报,1993,9 (3): 402~406
- [5] Davison, R J L. March or exertional hemoglobinuria. Semin. Hematol., 1969, 6:150~161
- [6] Robinson Y., Cristancho E, Boning D. Intravascular hemolysis and mean red blood cell age in athletes. Med Sci Sports Exerc, 2006, 38(3): 480-3.
- [7] Santos S A, M. I. Rebelo, E.M.B.Castro, et al. Leukocyte activa tion ,erythrocyte damage, lipid profile and oxidative stress im posed by high competition physical exercise in adolescents. Clin. Chem. Acta., 2001,306,119-126
- [8] Selby GB, Eichner ER. Endurance swimming, intravascular hemolysis, anemia, and iron depletion. New perspective on athlete's anemia. Am J Med, 1986,81(5),791-4.
- [9] Mahan LK. Nutrition and the allergic athlete. J Allergy Clin Immunol. 1984,73(5 Pt 2),728-34.
- [10] Shiraki K, Yamada T, Yoshimura H. Relation of protein nutri tion to the reduction of red blood cells induced by physical training. Jpn J Physiol, 1977,27(4),413-21
- [11] 袁建琴,冯炜权. 磷脂对运动小鼠某些生化指标的改善作用 [J]. 中国运动医学杂志,2001,20(1):19~23
- [12] Van Iperen C. E., A. Van De Wiel, J. J. Marx. Acute event related anemia. Br. J. Haematol., 2001,115,739-744
- [13] 金丽,田 野,赵杰修,等. 大鼠运动性贫血时以及营养干 预对红细胞膜脂质过氧化的影响[J]. 中国运动医学杂志, 2005, 25 (8): $75\sim78$

(责任编辑:何 聪)